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Abstract. A particular model for N coupled waves in non-thermal equilibrium is studied 
in detail. Exact closed forms for the one- and two-wave intensity distribution functions 
and an exact recurrence relation for the photon counting distribution function are obtained. 
The ‘thermodynamic limit’, N + CO, is discussed with special reference to the multi-mode 
laser, and a mean field type phase transition is shown to occur at laser threshold. 

1. Introduction 

It has been known for some time, how, starting from the exact quantum-mechanical 
Liouville equation for a closed system, consisting of all physically relevant quantities, 
one can derive an exact c number equation for a quasi-distribution function which is 
still a function of all the relevant variables. 

This quasi-classical correspondence, which in recent years has been considered in 
detail in conjunction with the laser (cf Lax 1968, Haken 1970), allows one to express the 
statistical problems associated with non-thermal flow equilibria into a framework 
similar to that of equilibrium statistical mechanics. The relevant equation may be 
considerably simplified by restricting ones attention to an open sub-system and treating 
the interaction with the rest of the system in some approximate manner. This procedure 
usually leads, in a reasonable approximation, to a Fokker-Planck (FP) equation for a 
continuous Markov process which may be written in the standard form (Lax 1966) 

where A is the drift vector, D the diffusion matrix, and x i  are real phase space variables. 
The stationary solution of this FP equation then plays the same role for the static 

statistical properties of the system as the Gibbs canonical distribution for thermal 
equilibrium. It may be written in the form P a exp[ - VI, where Vis a potential function 
involving all phase space variables and depends on the form of the drift and diffusion 
coefficients of the underlying FP equation. Under the condition of detailed balance, 
one can in fact construct V uniquely from the drift and diffusion terms if the generalized 
potential conditions devised by Graham and Haken (1971) are fulfilled. If, in addition, 
the system is non-oscillatory V is obtained in simple cases by direct line integration of 
the drift vectors (Lax 1966). This case is of special interest in that there exists an intimate 
relation between Vand the dynamics of the system contained in the drift vector (Graham 
1973). Finally attention is drawn to a novel method proposed by Haken (1973) to 
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construct Vfrom the constants of motion of a truncated FP equation. One may therefore 
assume that V and consequently the stationary distribution function is known, leaving 
as a major problem the evaluation of physically interesting quantities that may be 
derived from this form for P .  

For an interacting multi-wave system, like a multi-mode laser, the variables of the 
problem are the amplitudes and phases of the waves. Thus P is a distribution function 
of many variables and of little direct practical use unless one can use it to compute 
reduced distribution functions say for one or two waves or just for the intensity of one 
wave. This reduction process involves integrations over the variables which are not of 
interest in complete analogy to equilibrium statistical mechanics. These integrations 
can be done only for simple systems with specially chosen interactions. 

Since actually little is known about the statistical properties of interacting waves in 
non-thermal equilibrium it seems worthwhile to study solvable models in detail. 

A tractable model of many interacting waves has been introduced by Wonneberger 
and Lempert (1973a, to be referred to as WL). In WL it was shown, using an asymptotic 
treatment appropriate to a large number, N ,  of waves, that the beta distribution of 
mathematical statistics (cf eg Maisel 1971) accounts for the statistical properties of the 
model. 

Since then it has been found that a much more comprehensive treatment of this 
model is possible which allows one to exploit all static properties in a virtually exact 
way. Especially, it has become possible to investigate the ‘thermodynamic limit’, 
N + 00, that is, a system of infinitely many interacting waves. Such a system is expected 
to show critical behaviour similar to that recently discovered theoretically in the system 
of N atoms interacting with a single light mode (Dohm 1972a, b, Haken and Wohrstein 
1973). 

In $2,  we introduce the potential and discuss its physical relevance. Section 3 is 
devoted to the mathematics of the problem, and the general form of the reduced distri- 
bution functions, the generating function and the photon counting distribution are 
derived. In $ 4  the asymptotic regime investigated in WL is discussed and the range 
of validity of these earlier results assessed. 

Sections 5 and 6 deal with detailed predictions derived from the one- and two-wave 
distribution functions. Finally, in $ 7 the thermodynamic limit is considered and its 
relation to a phase transition is studied. The implications for a possible phase transition 
in a coupled multi-wave system, for example that of a multi-mode laser, are discussed 
in detail. 

2. Choice of potential 

The potential to be studied in the following is given by 

V =  - (z(v)-a) , 
4 l (  v = l  r 

where z(v) are the scaled intensities of the waves numbered by indices v and a is the 
pumping parameter specifying the state of the system. 

For N = 1, this potential was first derived by Risken (1965) from the stochastic 
rotating wave Van der Pol oscillator in his theory of the statistical properties of the 
single-mode laser. The reader is referred to Risken (1970) and to appendix 1 in the 
present paper for the notions of scaling and pumping parameter. The multi-wave 
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potential of the form of equation (1) is appropriate to randomly phased waves fluctuating 
about an operating point and confined to a small frequency band (cf WL). This form of 
V is expected to be fairly realistic for the non-resonant feedback laser (Ambartsumyan 
et a1 1967, cf also Brunner and Paul 1969) as well as for highly amplified vibrational 
flux in piezoelectric semiconductors (Wonneberger 197 1). 

The principle feature of V is that every wave interacts with itself and with all other 
waves with the same coupling strength. This is called the neutral coupling case in a 
multi-mode laser (Sargent et a1 1967). It leads to the characteristic dependence of V on 
C z(v) only, which is the formal reason for the tractability of the model. 

Another way of arriving at this form of Vis sketched in appendix 1, namely from the 
viewpoint of the presence of an instability mechanism. The wave system becomes 
unstable when the pumping parameter, a, changes sign from minus to plus. A non-linear 
feedback mechanism involving all waves eventually drives the system into a new stable 
state far from thermal equilibrium. 

However even when the form for V has been decided the major problem still remains. 
It may be stated in the following manner. Given values for the pumping parameter a and 
the total number N of interacting waves, what are the distribution functions of z(l), 
(z(l), z(2)) etc and of the incoherent superimposition I of N“ (< N )  wave intensities? 
The latter quantity is of practical interest in scattering experiments (Wonneberger et a1 
1974). In the next section an exact answer will be given to these questions for the par- 
ticular form of the potential discussed above. 

3. Mathematical procedure 

In the notation of WL we define a reduced distribution function 
m N  

P:””(z(l), . . . , z(N”)) J n dz(v)exp(- V), 
0 v = N “ + 1  

which for the particular potential given by equation (1) may be expressed in the form 

Py)(z( l ) ,  . . * , z(N”)) 

G exp[-$( I -N~)~]  dxx”- l  exp[-%I-Na)x-+x2], (2) Iom 
where I = z(p), and N‘ = N - N “  2 1. The G sign indicates that P, is not nor- 
malized. This integral was evaluated in WL using the method of steepest descent. 
However the accuracy of this approximation is difficult to assess. Fortunately this 
difficulty may be circumvented since it is possible to evaluate the integral exactly in 
closed form. In fact P;”” may be expressed in terms of parabolic cylinder functions, 
which also appear in the corresponding single-wave treatment (Risken 1970), giving 

Note that P, is a function of I only. This formal solution is of little practical use except 
for the calculation of the low-order distribution functions P,(z(l)) and P2(z(1), z(2)) 
(@ 5 and 6). 

However, as shown below, P:“‘) satisfies an ordinary second-order differential 
equation in the variable I ,  for any N “ .  This then allows one to study the behaviour of 
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the distribution function Pi”’) in a simple way. The differential equation can either be 
obtained by straightforward differentiation of equation (2) with respect to I and sub- 
sequent determination of the generated distributions Pi”’- ’) and PLN“-2) by partial 
integrations or more formally by differentiating equation (3)  and using the recurrence 
relations satisfied by D-,(z) .  The result is simply 

(4) 
d2  d 
d12 d l  

2-P:”‘)(1) = ( N ‘ -  l ) P y ’ ( I ) + ( N U -  l ) - P y ) ( l ) .  

This equation also applies for N ’  = 0 in which case I = z, and it then describes the 
single-mode case with an effective pump parameter equal to Na. 

The distribution function 
N “  

P(1) = Jm fi dz(p)S(l- 1 z(p‘) 
0 p = l  p ’ =  1 

is easily found by employing the contour integration method used in WL and one obtains 

p(1) 1”’- IpO“’) 
c (0 

The differential equation satisfied by P ( I )  follows from that for P, and reads : 

d2 d 
212 --(I) = [4(N”- 1)+(Na-I)I]I-P(I)  

dI2 d l  

+ [ ( N ’ -  1)12-(Na-I)(N”- 1)1-2(N”- l)N”]P(I). ( 5 )  

A quantity of central interest is the generating function 

Q(A) = s“ d l  exp( -Al)P(l) .  
0 

By Laplace transformation of equation (5) one obtains the third-order differential 
equation 

AQ”’(A)+(N+ 1 + NaA-2A2)Q”(A) + ( N ” +  1)(Na-4A)Q’(A)-2Nf‘(N”+ l)Q(A) = 0. (6) 

The boundary-value problem associated with this equation is solved by noting that 

Q(A = 0) = 1 ,  

Q’(A = 0) = - ( I )  = - N“(  z>, 
Q”(1 = 0) = ( I 2 )  = N”(z2)+(N”- l)N”(z(l)z(2)). 

(7) 

Here, use has been made of the equivalence of the waves. (z), ( z 2 )  and (z(1)2(2)), 
are the various moments of P and are explicitly determined by equations (12), (13) and 
(17) below. 

Following the procedure in WL, one can obtain from equation (6 )  a recurrence 
relation for the photon counting distribution p(n) defined by (Mandel 1958) 

For a competent review of photon statistics the reader is referred to Pike (1970). The 
above expression is appropriate for short counting intervals T << T ~ ,  where z, is the 
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intensity correlation time and v1  is related to the quantum efficiency of the absorption 
photon detector. The result of a simple but lengthy calculation is the four stage recur- 
rence relation 

( n  + l)(n + 2)(n + 3)p(n + 3) - ( n  + N + 1 + Nav,)(n + l ) (n  + 2)p(n + 2) 

+(PI+"'+  l)Nav,(n+ l)p(n+l) 

+ [ n  - 1 + (N"  + I)("' + 2)]np(n)}. 

= -2v?((n+ l ) (n+2)p(n+2)-2(n+N"+ l ) ( n +  l)p(n+ 1) 

(8) 

In the limit vf -, 0 the left-hand side of equation (8) is equivalent to the form obtained 
in WL. Equation (8) lends itself easily to computer evaluation. 

This completes the main formal results, which are an exact consequence of the 
potential being of the form given by equation (1). 

4. An asymptotic result 

In WL an as1,nptotic regime has been investigated which is roughly characterized by 
N large, a > 0 but not too small. The precise conditions for the validity of this asymptotic 
regime will now be established. We transform equation (6) to the new variable x = - Nul. 
and obtain : 

2x2Q(x)+ 4(N" + l)xQ(x) + 2N"(N" + l)Q(x) 

= (Na)2[xQ(x) + ( N  + 1 - x)&(x) - (N" + l)Q(x)], 

where a dot denotes differentiation with respect to x. For large enough values of 
the term in the square brackets must vanish. This gives immediately a solution in terms 
of a confluent hypergeometric function : 

which is the asymptotic result obtained in WL. The associated distribution P(Z) is a 
beta distribution again as found in WL. A comparison of the magnitudes of the different 
terms in equation (9) under the assumption that Q(2) is of the form given by equation (10) 
gives the following result. For a > 0 and Nu2 >> 1 and for 2 values in the range 
0 < A 5 a- '  one has only to retain those terms in the full equation (9) which actually 
lead to equation (10). The photon counting distribution (8) requires I = v l  . If equation 
(10) is valid v 1  is related to the mean count number ( n )  by ( n )  = N"avl (cf WL). This 
gives a bound ( n )  6 N" to the applicability of the counting distribution, equation (112) 
in WL, in the sense of arising from the form of the potential V, and under the conditions 
Nu2 >> 1 ,  a > 0. If a2 >> 1 the weaker and usually sufficient condition ( n )  5 N"N is 
obtained. 

In summary it has been shown that the distribution P ( I )  takes the form of a beta 
distribution in the asymptotic limit defined by a > 0 and Nu2 >> 1, irrespective of the 
values of N" and N'. If N is small but a2 >> 1, equation (10) is still a valid representation 
of Q(2). Thus the application of the beta distribution to experiments in Wonneberger 
and Lempert (1973b) and Wonneberger et a1 (1974) is fully justified. 
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5. One-wave distribution 

We now begin to investigate the results of § 3 which are not covered by the asymptotic 
limit given by the beta distribution. 

An important class of problems is associated with Pl(z),  that is with the distribution 
function for the intensity of one wave coupled to the remaining N - 1 waves. By direct 
computation involving the properties of the parabolic cylinder functions (cf Abramowitz 
and Stegun 1964) one obtains explicitly 

For N = 1 this reduces to the result obtained by Risken (1965). 
Direct evaluation, using equation (1 l), gives, for the mean intensity 

and for the mean squared intensity 

Higher moments may be computed by using equation (6) as the basis of a recurrence 
relation. 

Pl(z) has the remarkable property that it is a strictly decreasing function of z for all a 
and all N > 1. That is, regardless of the values of N (  > 1) and a, there occurs no amplitude 
stabilization. The formal proof for this is given in appendix 2. This absence of amplitude 
stabilization is most probably a consequence of wave coupling. If one introduces the 
coupling strength 5 following Grossmann and Richter (1971b) as the value of all off- 
diagonal elements of the scaled coupling matrix (equation (A.2) with c (v, v )  = 1 in 
appendix 1) then one finds the following behaviour. For every N 2 2 and every a 
there exists a critical value ( ,(N, a) c 1 such that for 5 > 5,  amplitude stabilization is 
absent. 5 = 5,  just allows a horizontal tangent in Pl(z) at z = 0. In the neutral coupling 
case, 5 = 1 and since 5 ,  < 1, amplitude stabilization is therefore strictly absent. 

The differential equation for Pl(z )  (with N '  = N - 1) allows a very simple discussion of 
the behaviour of Pl(z) and ( z )  in several limiting cases. We have seen above that Pl(z) 
is a monotonically decreasing function so that for large z its value becomes insignificant. 
Let us now consider the case where Pl(z )  is negligible for all z 2 Nlal. In that case 
one may neglect z compared to N a  in equation (4 )  to obtain 

2P; = ( N  - 2)P1 + N a p ; .  

This has a solution P l ( z )  a exp(kz), where k is given by 

This solution is consistent with the approximation made if IkNa( >> 1. The important 
conclusion one can draw is that under this condition every wave is thermal and its 
mean value is given by 

( z )  = -k-'. 
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We may consider three separate regions of validity : 
(i) a > 0, N >> 1. If in addition N a 2  >> 1 one has 

1 

(z> = a + L .  
N a  

The second term is a small correction to the corresponding result associated with the 
beta distribution (0 4). 

(ii) a < 0, Na2  >> 1. Then one obtains irrespective of N 
1 

This is the well known result for a linear gaussian process with damping constant N(al 
and scaled fluctuation strength Q = 4 (cf Risken 1970). 

(iii) Nu2  << 1, N >> 1 (threshold region). Here 

where the first term dominates the second because N a 2  << 1. 

values of z which are of order ( z ) ,  that is IkNal >> 1. 

to a thermal distribution Pl(z) for each individual wave of the form 

It is easily checked that in all three cases Nlal is much greater than the relevant 

In summary, the three cases, which essentially refer to many-wave situations, lead 

The behaviour of ( z )  as a function of a is sketched in figure 1. In particular we note that 
in the limit N -, cc 

(z> = a@), 
where 

a > 0, {:: a < 0. 
O(a) = 

The slope of the curve at a = 0 is equal to 3 for all finite values of N .  

0 0 

Figure 1. Mean intensity ( 2 )  of a wave coupled to N -  1 (>> 1) other waves as a function of 
the pumping parameter Q. 
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6. Two-wave distribution 

In this section we give a short account of some results associated with the two-wave 
distribution. Evaluation of the normalization integral associated with equation (3) for 
N' = N-2 gives 

From this, it may be shown that the cross correlations (z(p)z(v # p ) )  
given by 

(z(l)z(2)) are 

(z(1)@)) = +<z'>, (17) 

where ( z 2 )  is given by equation (13). 

Stegun 1964) 
Using the asymptotic formula for parabolic cylinder functions (cf Abramowitz and 

which is valid for x < 0, x2 >> 4p 2 1 one finds, under the corresponding conditions 
a > 0, Nu2 >> 1, N >> 1 that 

which, for N large enough, reduces to 

P2 a e x p  ( -- Zb')) exp ( -- zb"i . 

This latter result may also be obtained from equation (4) in the appropriate limit. This 
shows that any two waves are thermal and independent, hence uncorrelated. Absence 
of correlation seems to be a general feature for any small group of waves interacting 
with many waves. This lack of correlation implies, using equation (17), that 

(18) (z2) = 2(2(1)2(2)) = 2(z)2, 

which again shows the gaussian nature of the underlying statistics, 

7. 'Ihe thermodynamic limit N + 00 

Early experimental observations especially on solid-state lasers (Phelan and Rediker 
1965, Hunsperger and Ballantyne 1967) revealed a sharp onset of lasing operation 
when the pump strength reached threshold. Later there has been considerable theoretical 
speculation about the relation of this laser instability to a phase transition far from 
thermal equilibrium. Neglecting fluctuations, Degiorgio and Scully (1970) have estab- 
lished a one-to-one correspondence between a single-mode optical maser and a ferro- 
magnet described by the Curie-Weiss theory. The light-field amplitude is the order 
parameter and the inversion plays the role of the temperature. Graham and Haken 
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(1970) have cast the problem of the condensation of all thermal cavity modes into a 
lasing non-thermal mode during the passage through threshold, into the framework 
of the phenomenological Landau theory of phase transitions (cf also Grossmann and 
Richter 1971a). In these treatments, the thermodynamic limit, which is essential to 
the mathematical theory of phase transitions, plays no role. Recently Dohm (1972a, b) 
has solved exactly the laser equations appropriate to a single light mode coupled to 
N two-level atoms. He has shown that in the limit N -, 00 the atomic polarization per 
atom exhibits a mean-field phase transition with the pumping parameter behaving as 
the effective temperature. Identical conclusions have also been obtained by Haken and 
Wohrstein (1973). 

The light-field mode shows the same behaviour in Dohm’s theory if the quantity 
((n)/N)1’2 is taken as the order parameter p .  Here, (n) is the photon population of 
the mode. However it will be noted that this quantity diverges in the limit N -, 00. 

Identifying p with (z)l/’, we find exactly the same mean-field phase transition 
behaviour in our model of N interacting waves in the limit N -, 00. In this limit, as is 
shown in $ 5 ,  we may write 

giving the critical index /3 = 1/2. 
indeed, a corresponds to the reduced temperature E used in the description of equi- 

librium phase transitions. This is the expected mean-field behaviour and arises because 
of the long-range nature of the interaction in equation (1). The equivalent to the specific 
heat is the derivative of ( z >  with respect to a, which evidently has critical exponents 
a = U‘ = 0 (jump discontinuity). Consequently one expects y = 1 for the critical 
exponent of the equivalent to the compressibility (cf Stanley 1971). This is the linear 
response of the wave field to an external field of the same frequency. From the work of 
Agarwal (1972) on linear responses for non-thermal equilibria it is known that these 
generalized susceptibilities are related by dissipation fluctuation theorems to the 
spectral functions of the underlying Markov process. For the static case (frequency of 
injected signal = frequency of wave field) the susceptibility simplifies considerably and 
may be expressed by static averages alone. In detail, in the notation of Agarwal(1972), 
we choose the response operator to be 

where, without loss of generality, xv = Re E(v) and E(v) is the complex amplitude of the 
wave v, that is z(v) = t’i(v)ii*(v). This situation corresponds to the injection of a signal 
with fixed phase (coherent signal). The static response 6 ( B )  is then described by a 
susceptibility 

N 
X N ( a , o  = 0) = 1 (XvXv,), 

v,v’= 1 

which gives 

because the distribution function in equilibrium is phase invariant and (x,‘) = &z) .  
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Using the result given by equation (1 5),  which is appropriate below threshold, but 
because of the thermodynamic limit also true arbitrarily near to it, we obtain: 

1 x(a < 0)  = -. 
la1 

This is the equivalent to the Curie-Weiss law for the susceptibility of a ferromagnet in 
its paramagnetic phase. The critical exponent associated with x is y = 1, thus confirming 
the mean-field nature of the phase transition in this exactly soluble model. For a > 0, 
that is above threshold, x is infinite, indicating the simultaneous phase ordering of all 
waves if an external field is applied. 

Though our results from the phase transition point of view are qualitatively the 
same as those of Degiorgio and Scully (1970), they are obtained by taking the thermo- 
dynamic limit and not by neglecting fluctuations. In fact, neglect of fluctuations is 
completely inadmissible in our case, where each wave is thermal and thus its intensity 
undergoes large fluctuations (cf equation (18)). 

Some remarks concerning the relation of onset of lasing operation in a laser to that 
of spontaneous order in a second-order phase transition seem necessary. A perfect 
single-mode laser near threshold is theoretically described by the stochastic rotating 
wave Van der Pol oscillator (cf Risken 1970). This has been proved in recent years by 
very careful experiments (Arecchi and Degiorgio 1972, and the references therein, 
Gerhardt et a1 1972). Neither experiment nor theory, supplemented by Agarwal’s 
(1972) results on the susceptibility, show any indication of critical behaviour in the light 
field. From this one must conclude that the thermodynamic limit, with respect to the 
single laser mode, has not been reached. This evidently is related to the long coherence 
length of the emitted light corresponding to high spectral purity in only one mode, 
making these lasers effectively zero-dimensional systems (Grossmann and Richter 
1971a). 

The situation is different for the solid-state lasers cited by Dohm (1972b) which 
indeed may exhibit a sharp onset of lasing operation. Here the spatial mode structure 
is usually very complicated. In a first approximation one can simulate such a situation 
by our model of multi-mode operation. We therefore propose that the sharp onset of 
lasing operation, whenever it is observed, is related to the fact that several degrees of 
freedom of the light field simultaneously become unstable. 

If a multi-mode operation exists with well separated individual thresholds then we 
do not expect a phase transition to occur. This seems to be confirmed by the experi- 
mental results of Lavine and Iannini (1965) on solid-state lasers. We further note that 
if there is a large number of modes with equal threshold values, then again one would 
expect a phase transition at each threshold. 

Clearly, the investigation of these problems on a more fundamental basis requires 
one to consider the many-atom system coupled to a multi-wave light field, with a range 
of threshold values. 

8. Discussion 

We have presented exact analytical results for the statistics of a simple system of inter- 
acting waves in non-thermal equilibrium. The model is an extension of the stochastic 
rotating Van der Pol oscillator to  a multi-wave situation in which N equivalent waves 
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interact by neutral intensity coupling. The non-thermal equilibrium state is described 
by a single parameter a which plays the role of the reduced temperature. Analytic 
formulae have been given for the joint distribution functions P(z(l), . . . , z (N”))  for the 
intensities z(p) of a sub-group of N” ( c N )  waves. The distribution function, the generat- 
ing function, and the short-time counting distribution for the incoherent superimposition, 
I, of these waves have also been considered. The results have been discussed for a wide 
range of the parameters N ,  N and a. 

One of the characteristic results is the thermalization of each individual wave if N 
is large. This thermalization is expected to be a general feature of coupled many-wave 
systems (it is one of the basic assumptions in Edwards’ theory of turbulence (Edwards 
1964, Edwards and McComb 1969)). It cannot be justified by involving the central 
limit theorem which refers to independent, that is physically non-interacting, stochastic 
variables. In fact, our model of interacting waves is an explicit counter example to the 
central limit theorem. The variance of I for example is smaller than that predicted by 
this theorem. Consequently, the interactions have reduced the fluctuations. 

The exact results also allow one to discuss the thermodynamic limit N + 00. A 
mean-field phase transition is observed to occur in the order parameter p (z)’’’ at 
a = 0. The static susceptibility ~ ( a ) ,  associated with the thermodynamic limit of (I) 
(cf equation (20)), shows the Curie-Weiss behaviour of a ferromagnet in the paramagnetic 
phase. 

It was further argued that the sharp onset of lasing operation at a = 0 (threshold) 
observed in certain lasers might be related to a spatially in-homogeneous multi-mode 
type light field structure in these lasers rather than due to the recently discovered phase 
transition of the atomic polarization which drives the light field (Dohm 1972a, b). 
However in Dohm’s theory there is only one light mode and the idea of a phase transition 
in a system with only one degree of freedom seems self-contradictory. 
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Appendix 1. Derivation of the model potential 

One may arrive at  the specific form of equation (1)for Vby starting from a gain expansion 
around an unstable equilibrium. 

The gain 6(v) experienced by the wave with index v can be written for sufficiently low 
intensities and assuming only intensity wave coupling in the form 

Here b(v) is the linear gain in the time domain 5, and E is a positive symmetric coupling 
matrix which ensures that 6(v) eventually goes to zero for increasing intensities 2(v’). 
The condition b(v) > 0 means that the wave v is unstable, at least for small intensity. 

The diffusion coefficients q(v) of the FP equation are taken to be independent of v, 
that is q(v) = q. This condition is necessary so as to allow the integration of the stationary 
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FP equation (Graham 1973, chap 6.2). Under this condition one can introduce new 
scaled variables for the intensities i ( v )  and time t according to 

t = (Eq)”2Z, 

where i; is a typical value of a diagonal element of E(v, v’). The effective gain in the time 
domain t then becomes 

with d = and c(v, v’) = i;(v, v’)/E. The potential Vis then of the bilinear form 

v = a C (z(v)  - a(v))c(v, v’)(z(v’) - a(v’)), 
N 

v , v ’  = 1 

where the quantities a(v)  satisfy 
N 

b(v) = c(v, v‘)a(v’). 
v ‘ = l  

(A.3) 

b4.4) 

They have the meaning of saturation intensities if they are greater than zero. 
1, that is neutral 

coupling between equivalent waves. From (A.4) it is seen that this implies b(v) = b, 
that is the thresholds of all waves coincide. Furthermore equation (A.3) implies that 
under this condition the pumping parameter a is given by 2 a(v) /N.  Thus our model 
of a multi-mode system is such that there are many saturation values, a(v), but only one 
threshold, namely a = 0. 

In 0 2, the viewpoint of fluctuations around an operating point has been emphasized 
and this leads in a much more general way to equation (1) for V (cf WL). It is now seen 
how both points of view may be related. If the matrix c is non-singular, equation (A.3) 
gives unique values for a(v) for every given set {b(v’)}. These a(v) values then define the 
associated operating point. If c is singular the operating point is not uniquely defined. 

Equation (1) is finally obtained from (A.3) by requiring c(v, v’) 

Appendix 2. Lack of amplitude stabilization 

We consider the case N” = 1, that is the one-wave distribution Pl(z) ,  and prove that 
P;(zo)  # 0, for all zo in [O; CO), when N 2 2. Consequently Pl ( z )  must be a strictly 
decreasing function of z since Pl ( z )  must approach zero as z --* CO. There are two separate 
cases : 

(i) N = 2. The differential equation (4) satisfied by Pl(z )  reduces to 

2P; = (2a - z ) P ; .  

If at the point z = z o ,  P; (zo)  = 0 then P;(z,) and all higher derivatives at this point 
are zero. Hence this would require Pl(z )  to be a constant, which is clearly impossible. 

(ii) N > 2. In this case one has 

P‘;(z,) = ( N  - 2)Pl(Z,) 2 0, 

for all stationary points zo .  P l (zo)  = 0 can be excluded since it implies Pl(z) E 0. 
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Thus P;(z,) > 0. I t  follows that P l ( z )  has at most minima. Topological reasons require 
that every maximum be followed by a minimum since Pl(z -+ CO) -+ 0. Hence Pl(z) 
can have neither minima nor maxima. 

We next consider the joint distribution functions. The full distribution P a exp( - V ) ,  
with I/ given by equation (l), is constant on the hyperplane Z z(v) = N u  and decreases 
rapidly off this plane. After N’ (21) contractions one obtains equation (4) for the 
distribution P:””, which as a function of I admits the same discussion as that for Pl(z) .  
Thus one concludes that the multi-dimensional distribution functions P(z(l), . . . , z (N”))  
are also strictly decreasing functions of all its arguments. This means that the hyperplane 

z(v)  = Nu, as the maximum surface for N ‘  = 0, has moved into the unphysical region 
even for N‘ = 1. 

References 

Abramowitz E and Stegun I A (ed) 1964 Handbook ofMathematical Functions (New York: Dover) 
Aganval G S 1972 Z .  Phys. 252 25-38 
Ambartsumyan R V, Kryukov P G, Letokhov V S and Matveets Yu A 1967 Zh. Eksp. Teor. Fiz. 53 1955-66 

Arecchi F T aild Degiorgio V 1972 Laser Handbook ed F T Arecchi and E 0 Schulz-Dubois (Amsterdam: 

Brunner W and Paul H 1969 Ann. Phys., Lpz 23 152-67, 38496 
Degiorgio V and Scully M 0 1970 Phys. Rev. A 2 11767 
Dohm V 1972a Solid St .  Commun. 11 127S-6 

~ 1972b Jiilich Report Jul-905-FF (Jiilich: Kernforschungsanlage) pp 1-80 
Edwards S F 1964 J .  Fluid Mech. 18 239-73 
Edwards S F and McComb W D 1969 J.  Phys. A: Gen. Phys. 2 157-71 
Gerhardt H, Welling H and Guttner A 1972 Z .  Phys. 253 113-26 
Graham R and Haken H 1970 Z .  Phys. 237 31-46 

Graham R 1973 Springer Tracts in Modern Physics vol66 (Berlin, Heidelberg, New York: Springer) pp 1-97 
Grossmann S and Richter P H 1971a Z .  Phys. 242 458-75 

Haken H 1970 Encyclopaedia of Physics vol XXV/2c, ed S Fliigge (Berlin, Heidelberg, New York: Springer) 

Haken H and Wohrstein H G Opt. Commun. 9 123-7 
Hunsperger R and Ballantyne J 1967 Appl. Phys. Lett. 10 130-2 
Lavine J M and Iannini A A 1965 J .  Appl. Phys. 36 402-5 
Lax M 1966 Rev. Mod. Phys. 38 359-79 
- 1968 Brandeis University Summer Institute in Theoretical Physics, 1966 Lectures, ed M Chretien, E P 

Maisel L 1971 Probability, Statistics and Random Processes (New York: Simon and Schuster) 
Mandel L 1958 Proc. Phys. Soc. 72 103748 
Phelan R J and Rediker R H 1965 Appl. Phys. Lett 6 70-1 
Pike E R 1970 Quanrum Optics ed S M Kay and A Maitland (London and New York: Academic Press) pp 

Risken H 1965 Z .  Phys. 186 85-98 
- 1970 Progress in Optics vol 8, ed E Wolf (Amsterdam: North-Holland) pp 239-94 
Sargent M 111, Lamb W E and Fork R L 1967 Phys. Rev. 164 450-65 
Stanley H E 1971 Phase Transitions and Critical Phenomena (Oxford: Clarendon) 
Wonneberger W 1971 Z .  NaturJ 26a 1625-9 
Wonneberger W and Lempert J 1973a Z .  Naturf. 28a 762-71 
- 1973b Opt. Commun. 9 4-7 
Wonneberger W, Lempert J and Wettling W 1974 J .  Phys. C :  Solid St. Phys. 7 142842 

(1968 SOU. Phys.-JETP 26 1109-14) 

North-Holland) pp 191-264 

- 1971 Z. Phys. 243 289-302 

- 1971 b Z. Phys. 249 43-57 

- 1973 Z .  PhyS. 263 267-82 

Gross and S Deser (New York: Gordon and Breach) pp 269-478 

127-76 


